新闻动态

关于keras多任务多loss回传的思考

发布日期:2022-04-12 12:46 | 文章来源:源码中国

如果有一个多任务多loss的网络,那么在训练时,loss是如何工作的呢?

比如下面:

model = Model(inputs = input, outputs = [y1, y2])
l1 = 0.5
l2 = 0.3
model.compile(loss = [loss1, loss2], loss_weights=[l1, l2], ...)

其实我们最终得到的loss为

final_loss = l1 * loss1 + l2 * loss2

我们最终的优化效果是最小化final_loss。

问题来了,在训练过程中,是否loss2只更新得到y2的网络通路,还是loss2会更新所有的网络层呢?

此问题的关键在梯度回传上,即反向传播算法。

所以loss1只对x1和x2有影响,而loss2只对x1和x3有影响。

补充:keras 多个LOSS总和定义

用字典形式,名字是模型中输出那一层的名字,这里的loss可以是自己定义的,也可是自带的

补充:keras实战-多类别分割loss实现

本文样例均为3d数据的onehot标签形式,即y_true(batch_size,x,y,z,class_num)

1、dice loss

def dice_coef_fun(smooth=1):
 def dice_coef(y_true, y_pred):
  #求得每个sample的每个类的dice
  intersection = K.sum(y_true * y_pred, axis=(1,2,3))
  union = K.sum(y_true, axis=(1,2,3)) + K.sum(y_pred, axis=(1,2,3))
  sample_dices=(2. * intersection + smooth) / (union + smooth) #一维数组 为各个类别的dice
  #求得每个类的dice
  dices=K.mean(sample_dices,axis=0)
  return K.mean(dices) #所有类别dice求平均的dice
 return dice_coef
 
def dice_coef_loss_fun(smooth=0):
 def dice_coef_loss(y_true,y_pred):
  return 1-1-dice_coef_fun(smooth=smooth)(y_true=y_true,y_pred=y_pred)
 return dice_coef_loss

2、generalized dice loss

def generalized_dice_coef_fun(smooth=0):
 def generalized_dice(y_true, y_pred):
  # Compute weights: "the contribution of each label is corrected by the inverse of its volume"
  w = K.sum(y_true, axis=(0, 1, 2, 3))
  w = 1 / (w ** 2 + 0.00001)
  # w为各个类别的权重,占比越大,权重越小
  # Compute gen dice coef:
  numerator = y_true * y_pred
  numerator = w * K.sum(numerator, axis=(0, 1, 2, 3))
  numerator = K.sum(numerator)
 
  denominator = y_true + y_pred
  denominator = w * K.sum(denominator, axis=(0, 1, 2, 3))
  denominator = K.sum(denominator)
 
  gen_dice_coef = numerator / denominator
 
  return  2 * gen_dice_coef
 return generalized_dice
 
def generalized_dice_loss_fun(smooth=0):
 def generalized_dice_loss(y_true,y_pred):
  return 1 - generalized_dice_coef_fun(smooth=smooth)(y_true=y_true,y_pred=y_pred)
 return generalized_dice_loss

3、tversky coefficient loss

# Ref: salehi17, "Twersky loss function for image segmentation using 3D FCDN"
# -> the score is computed for each class separately and then summed
# alpha=beta=0.5 : dice coefficient
# alpha=beta=1: tanimoto coefficient (also known as jaccard)
# alpha+beta=1: produces set of F*-scores
# implemented by E. Moebel, 06/04/18
def tversky_coef_fun(alpha,beta):
 def tversky_coef(y_true, y_pred):
  p0 = y_pred  # proba that voxels are class i
  p1 = 1 - y_pred  # proba that voxels are not class i
  g0 = y_true
  g1 = 1 - y_true
 
  # 求得每个sample的每个类的dice
  num = K.sum(p0 * g0, axis=( 1, 2, 3))
  den = num + alpha * K.sum(p0 * g1,axis= ( 1, 2, 3)) + beta * K.sum(p1 * g0, axis=( 1, 2, 3))
  T = num / den  #[batch_size,class_num]
  
  # 求得每个类的dice
  dices=K.mean(T,axis=0) #[class_num]
  
  return K.mean(dices)
 return tversky_coef
 
def tversky_coef_loss_fun(alpha,beta):
 def tversky_coef_loss(y_true,y_pred):
  return 1-tversky_coef_fun(alpha=alpha,beta=beta)(y_true=y_true,y_pred=y_pred)
 return tversky_coef_loss

4、IoU loss

def IoU_fun(eps=1e-6):
 def IoU(y_true, y_pred):
  # if np.max(y_true) == 0.0:
  #  return IoU(1-y_true, 1-y_pred) ## empty image; calc IoU of zeros
  intersection = K.sum(y_true * y_pred, axis=[1,2,3])
  union = K.sum(y_true, axis=[1,2,3]) + K.sum(y_pred, axis=[1,2,3]) - intersection
  #
  ious=K.mean((intersection + eps) / (union + eps),axis=0)
  return K.mean(ious)
 return IoU
 
def IoU_loss_fun(eps=1e-6):
 def IoU_loss(y_true,y_pred):
  return 1-IoU_fun(eps=eps)(y_true=y_true,y_pred=y_pred)
 return IoU_loss

以上为个人经验,希望能给大家一个参考,也希望大家多多支持本站。

香港服务器租用

版权声明:本站文章来源标注为YINGSOO的内容版权均为本站所有,欢迎引用、转载,请保持原文完整并注明来源及原文链接。禁止复制或仿造本网站,禁止在非www.yingsoo.com所属的服务器上建立镜像,否则将依法追究法律责任。本站部分内容来源于网友推荐、互联网收集整理而来,仅供学习参考,不代表本站立场,如有内容涉嫌侵权,请联系alex-e#qq.com处理。

相关文章

实时开通

自选配置、实时开通

免备案

全球线路精选!

全天候客户服务

7x24全年不间断在线

专属顾问服务

1对1客户咨询顾问

在线
客服

在线客服:7*24小时在线

客服
热线

400-630-3752
7*24小时客服服务热线

关注
微信

关注官方微信
顶部