新闻动态

Pytorch 如何实现常用正则化

发布日期:2022-04-04 18:10 | 文章来源:源码之家

Stochastic Depth

论文:Deep Networks with Stochastic Depth

本文的正则化针对于ResNet中的残差结构,类似于dropout的原理,训练时对模块进行随机的删除,从而提升模型的泛化能力。

对于上述的ResNet网络,模块越在后面被drop掉的概率越大。

作者直觉上认为前期提取的低阶特征会被用于后面的层。

第一个模块保留的概率为1,之后保留概率随着深度线性递减。

对一个模块的drop函数可以采用如下的方式实现:

def drop_connect(inputs, p, training):
 """ Drop connect. """
 if not training: return inputs # 测试阶段
 batch_size = inputs.shape[0]
 keep_prob = 1 - p
 random_tensor = keep_prob
 random_tensor += torch.rand([batch_size, 1, 1, 1], dtype=inputs.dtype, device=inputs.device)
 # 以样本为单位生成模块是否被drop的01向量
 binary_tensor = torch.floor(random_tensor) 
 # 因为越往后越容易被drop,所以没有被drop的值就要通过除keep_prob来放大
 output = inputs / keep_prob * binary_tensor
 return output

在Pytorch建立的Module类中,具有forward函数

可以在forward函数中进行drop:

def forward(self, x):
 x=...
 if stride == 1 and in_planes == out_planes:
  if drop_connect_rate:
x = drop_connect(x, p=drop_connect_rate, training=self.training)
  x = x + inputs  # skip connection
 return x

主函数:

for idx, block in enumerate(self._blocks):
 drop_connect_rate = self._global_params.drop_connect_rate
 if drop_connect_rate:
  drop_connect_rate *= float(idx) / len(self._blocks)
 x = block(x, drop_connect_rate=drop_connect_rate)

补充:pytorch中的L2正则化实现方法

搭建神经网络时需要使用L2正则化等操作来防止过拟合,而pytorch不像TensorFlow能在任意卷积函数中添加L2正则化的超参,那怎么在pytorch中实现L2正则化呢?

方法如下:超级简单!

optimizer = torch.optim.Adam(net.parameters(), lr=0.001, weight_decay=5.0)

torch.optim.Adam()参数中的 weight_decay=5.0 即为L2正则化(只是pytorch换了名字),其数值即为L2正则化的惩罚系数,一般设置为1、5、10(根据需要设置,默认为0,不使用L2正则化)。

注:

pytorch中的优化函数L2正则化默认对所有网络参数进行惩罚,且只能实现L2正则化,如需只惩罚指定网络层参数或采用L1正则化,只能自己定义。。。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持本站。

美国稳定服务器

版权声明:本站文章来源标注为YINGSOO的内容版权均为本站所有,欢迎引用、转载,请保持原文完整并注明来源及原文链接。禁止复制或仿造本网站,禁止在非www.yingsoo.com所属的服务器上建立镜像,否则将依法追究法律责任。本站部分内容来源于网友推荐、互联网收集整理而来,仅供学习参考,不代表本站立场,如有内容涉嫌侵权,请联系alex-e#qq.com处理。

相关文章

实时开通

自选配置、实时开通

免备案

全球线路精选!

全天候客户服务

7x24全年不间断在线

专属顾问服务

1对1客户咨询顾问

在线
客服

在线客服:7*24小时在线

客服
热线

400-630-3752
7*24小时客服服务热线

关注
微信

关注官方微信
顶部