新闻动态

pytorch中DataLoader()过程中遇到的一些问题

发布日期:2022-04-01 18:27 | 文章来源:源码之家

如下所示:

RuntimeError: stack expects each tensor to be equal size, but got [3, 60, 32] at entry 0 and [3, 54, 32] at entry 2

train_dataset = datasets.ImageFolder(
 traindir,
 transforms.Compose([
  transforms.Resize((224)) ###

原因是

transforms.Resize() 的参数设置问题,改为如下设置就可以了

train_dataset = datasets.ImageFolder(
 traindir,
 transforms.Compose([
  transforms.Resize((224,224)),

同理,val_dataset中也调整为transforms.Resize((224,224))。

补充:pytorch之dataloader深入剖析

- dataloader本质是一个可迭代对象,使用iter()访问,不能使用next()访问;

- 使用iter(dataloader)返回的是一个迭代器,然后可以使用next访问;

- 也可以使用`for inputs, labels in dataloaders`进行可迭代对象的访问;

- 一般我们实现一个datasets对象,传入到dataloader中;然后内部使用yeild返回每一次batch的数据;

① DataLoader本质上就是一个iterable(跟python的内置类型list等一样),并利用多进程来加速batch data的处理,使用yield来使用有限的内存 ​

② Queue的特点

当队列里面没有数据时: queue.get() 会阻塞, 阻塞的时候,其它进程/线程如果有queue.put() 操作,本线程/进程会被通知,然后就可以 get 成功。

当数据满了: queue.put() 会阻塞

③ DataLoader是一个高效,简洁,直观的网络输入数据结构,便于使用和扩展

输入数据PipeLine

pytorch 的数据加载到模型的操作顺序是这样的:

① 创建一个 Dataset 对象

② 创建一个 DataLoader 对象

③ 循环这个 DataLoader 对象,将img, label加载到模型中进行训练

dataset = MyDataset()
dataloader = DataLoader(dataset)
num_epoches = 100
for epoch in range(num_epoches):
for img, label in dataloader:
....

所以,作为直接对数据进入模型中的关键一步, DataLoader非常重要。

首先简单介绍一下DataLoader,它是PyTorch中数据读取的一个重要接口,该接口定义在dataloader.py中,只要是用PyTorch来训练模型基本都会用到该接口(除非用户重写…),该接口的目的:将自定义的Dataset根据batch size大小、是否shuffle等封装成一个Batch Size大小的Tensor,用于后面的训练。

官方对DataLoader的说明是:“数据加载由数据集和采样器组成,基于python的单、多进程的iterators来处理数据。”关于iterator和iterable的区别和概念请自行查阅,在实现中的差别就是iterators有__iter__和__next__方法,而iterable只有__iter__方法。

1.DataLoader

先介绍一下DataLoader(object)的参数:

dataset(Dataset): 传入的数据集

batch_size(int, optional): 每个batch有多少个样本

shuffle(bool, optional): 在每个epoch开始的时候,对数据进行重新排序

sampler(Sampler, optional): 自定义从数据集中取样本的策略,如果指定这个参数,那么shuffle必须为False

batch_sampler(Sampler, optional): 与sampler类似,但是一次只返回一个batch的indices(索引),需要注意的是,一旦指定了这个参数,那么batch_size,shuffle,sampler,drop_last就不能再制定了(互斥——Mutually exclusive)

num_workers (int, optional): 这个参数决定了有几个进程来处理data loading。0意味着所有的数据都会被load进主进程。(默认为0)

collate_fn (callable, optional): 将一个list的sample组成一个mini-batch的函数

pin_memory (bool, optional): 如果设置为True,那么data loader将会在返回它们之前,将tensors拷贝到CUDA中的固定内存(CUDA pinned memory)中.

drop_last (bool, optional): 如果设置为True:这个是对最后的未完成的batch来说的,比如你的batch_size设置为64,而一个epoch只有100个样本,那么训练的时候后面的36个就被扔掉了…

如果为False(默认),那么会继续正常执行,只是最后的batch_size会小一点。

timeout(numeric, optional): 如果是正数,表明等待从worker进程中收集一个batch等待的时间,若超出设定的时间还没有收集到,那就不收集这个内容了。这个numeric应总是大于等于0。默认为0

worker_init_fn (callable, optional): 每个worker初始化函数 If not None, this will be called on each

worker subprocess with the worker id (an int in [0, num_workers - 1]) as
input, after seeding and before data loading. (default: None) 

- 首先dataloader初始化时得到datasets的采样list

class DataLoader(object):
 r"""
 Data loader. Combines a dataset and a sampler, and provides
 single- or multi-process iterators over the dataset.
 Arguments:
  dataset (Dataset): dataset from which to load the data.
  batch_size (int, optional): how many samples per batch to load
(default: 1).
  shuffle (bool, optional): set to ``True`` to have the data reshuffled
at every epoch (default: False).
  sampler (Sampler, optional): defines the strategy to draw samples from
the dataset. If specified, ``shuffle`` must be False.
  batch_sampler (Sampler, optional): like sampler, but returns a batch of
indices at a time. Mutually exclusive with batch_size, shuffle,
sampler, and drop_last.
  num_workers (int, optional): how many subprocesses to use for data
loading. 0 means that the data will be loaded in the main process.
(default: 0)
  collate_fn (callable, optional): merges a list of samples to form a mini-batch.
  pin_memory (bool, optional): If ``True``, the data loader will copy tensors
into CUDA pinned memory before returning them.
  drop_last (bool, optional): set to ``True`` to drop the last incomplete batch,
if the dataset size is not divisible by the batch size. If ``False`` and
the size of dataset is not divisible by the batch size, then the last batch
will be smaller. (default: False)
  timeout (numeric, optional): if positive, the timeout value for collecting a batch
from workers. Should always be non-negative. (default: 0)
  worker_init_fn (callable, optional): If not None, this will be called on each
worker subprocess with the worker id (an int in ``[0, num_workers - 1]``) as
input, after seeding and before data loading. (default: None)
 .. note:: By default, each worker will have its PyTorch seed set to
  ``base_seed + worker_id``, where ``base_seed`` is a long generated
  by main process using its RNG. However, seeds for other libraies
  may be duplicated upon initializing workers (w.g., NumPy), causing
  each worker to return identical random numbers. (See
  :ref:`dataloader-workers-random-seed` section in FAQ.) You may
  use ``torch.initial_seed()`` to access the PyTorch seed for each
  worker in :attr:`worker_init_fn`, and use it to set other seeds
  before data loading.
 .. warning:: If ``spawn`` start method is used, :attr:`worker_init_fn` cannot be an
  unpicklable object, e.g., a lambda function.
 """
 __initialized = False
 def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None,
  num_workers=0, collate_fn=default_collate, pin_memory=False, drop_last=False,
  timeout=0, worker_init_fn=None):
  self.dataset = dataset
  self.batch_size = batch_size
  self.num_workers = num_workers
  self.collate_fn = collate_fn
  self.pin_memory = pin_memory
  self.drop_last = drop_last
  self.timeout = timeout
  self.worker_init_fn = worker_init_fn
  if timeout < 0:
raise ValueError('timeout option should be non-negative')
  if batch_sampler is not None:
if batch_size > 1 or shuffle or sampler is not None or drop_last:
 raise ValueError('batch_sampler option is mutually exclusive '
  'with batch_size, shuffle, sampler, and '
  'drop_last')
self.batch_size = None
self.drop_last = None
  if sampler is not None and shuffle:
raise ValueError('sampler option is mutually exclusive with '
 'shuffle')
  if self.num_workers < 0:
raise ValueError('num_workers option cannot be negative; '
 'use num_workers=0 to disable multiprocessing.')
  if batch_sampler is None:
if sampler is None:
 if shuffle:
  sampler = RandomSampler(dataset)  //将list打乱
 else:
  sampler = SequentialSampler(dataset)
batch_sampler = BatchSampler(sampler, batch_size, drop_last)
  self.sampler = sampler
  self.batch_sampler = batch_sampler
  self.__initialized = True
 def __setattr__(self, attr, val):
  if self.__initialized and attr in ('batch_size', 'sampler', 'drop_last'):
raise ValueError('{} attribute should not be set after {} is '
 'initialized'.format(attr, self.__class__.__name__))
  super(DataLoader, self).__setattr__(attr, val)
 def __iter__(self):
  return _DataLoaderIter(self)
 def __len__(self):
  return len(self.batch_sampler)

其中:RandomSampler,BatchSampler已经得到了采用batch数据的index索引;yield batch机制已经在!!!

class RandomSampler(Sampler):
 r"""Samples elements randomly, without replacement.
 Arguments:
  data_source (Dataset): dataset to sample from
 """
 def __init__(self, data_source):
  self.data_source = data_source
 def __iter__(self):
  return iter(torch.randperm(len(self.data_source)).tolist())
 def __len__(self):
  return len(self.data_source)
class BatchSampler(Sampler):
 r"""Wraps another sampler to yield a mini-batch of indices.
 Args:
  sampler (Sampler): Base sampler.
  batch_size (int): Size of mini-batch.
  drop_last (bool): If ``True``, the sampler will drop the last batch if
its size would be less than ``batch_size``
 Example:
  >>> list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=False))
  [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
  >>> list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=True))
  [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
 """
 def __init__(self, sampler, batch_size, drop_last):
  if not isinstance(sampler, Sampler):
raise ValueError("sampler should be an instance of "
 "torch.utils.data.Sampler, but got sampler={}"
 .format(sampler))
  if not isinstance(batch_size, _int_classes) or isinstance(batch_size, bool) or \
 batch_size <= 0:
raise ValueError("batch_size should be a positive integeral value, "
 "but got batch_size={}".format(batch_size))
  if not isinstance(drop_last, bool):
raise ValueError("drop_last should be a boolean value, but got "
 "drop_last={}".format(drop_last))
  self.sampler = sampler
  self.batch_size = batch_size
  self.drop_last = drop_last
 def __iter__(self):
  batch = []
  for idx in self.sampler:
batch.append(idx)
if len(batch) == self.batch_size:
 yield batch
 batch = []
  if len(batch) > 0 and not self.drop_last:
yield batch
 def __len__(self):
  if self.drop_last:
return len(self.sampler) // self.batch_size
  else:
return (len(self.sampler) + self.batch_size - 1) // self.batch_size

- 其中 _DataLoaderIter(self)输入为一个dataloader对象;如果num_workers=0很好理解,num_workers!=0引入多线程机制,加速数据加载过程;

- 没有多线程时:batch = self.collate_fn([self.dataset[i] for i in indices])进行将index转化为data数据,返回(image,label);self.dataset[i]会调用datasets对象的

__getitem__()方法

- 多线程下,会为每个线程创建一个索引队列index_queues;共享一个worker_result_queue数据队列!在_worker_loop方法中加载数据;

class _DataLoaderIter(object):
 r"""Iterates once over the DataLoader's dataset, as specified by the sampler"""
 def __init__(self, loader):
  self.dataset = loader.dataset
  self.collate_fn = loader.collate_fn
  self.batch_sampler = loader.batch_sampler
  self.num_workers = loader.num_workers
  self.pin_memory = loader.pin_memory and torch.cuda.is_available()
  self.timeout = loader.timeout
  self.done_event = threading.Event()
  self.sample_iter = iter(self.batch_sampler)
  base_seed = torch.LongTensor(1).random_().item()
  if self.num_workers > 0:
self.worker_init_fn = loader.worker_init_fn
self.index_queues = [multiprocessing.Queue() for _ in range(self.num_workers)]
self.worker_queue_idx = 0
self.worker_result_queue = multiprocessing.SimpleQueue()
self.batches_outstanding = 0
self.worker_pids_set = False
self.shutdown = False
self.send_idx = 0
self.rcvd_idx = 0
self.reorder_dict = {}
self.workers = [
 multiprocessing.Process(
  target=_worker_loop,
  args=(self.dataset, self.index_queues[i],  self.worker_result_queue, self.collate_fn, base_seed + i,  self.worker_init_fn, i))
 for i in range(self.num_workers)]
if self.pin_memory or self.timeout > 0:
 self.data_queue = queue.Queue()
 if self.pin_memory:
  maybe_device_id = torch.cuda.current_device()
 else:
  # do not initialize cuda context if not necessary
  maybe_device_id = None
 self.worker_manager_thread = threading.Thread(
  target=_worker_manager_loop,
  args=(self.worker_result_queue, self.data_queue, self.done_event, self.pin_memory,  maybe_device_id))
 self.worker_manager_thread.daemon = True
 self.worker_manager_thread.start()
else:
 self.data_queue = self.worker_result_queue
for w in self.workers:
 w.daemon = True  # ensure that the worker exits on process exit
 w.start()
_update_worker_pids(id(self), tuple(w.pid for w in self.workers))
_set_SIGCHLD_handler()
self.worker_pids_set = True
# prime the prefetch loop
for _ in range(2 * self.num_workers):
 self._put_indices()
 def __len__(self):
  return len(self.batch_sampler)
 def _get_batch(self):
  if self.timeout > 0:
try:
 return self.data_queue.get(timeout=self.timeout)
except queue.Empty:
 raise RuntimeError('DataLoader timed out after {} seconds'.format(self.timeout))
  else:
return self.data_queue.get()
 def __next__(self):
  if self.num_workers == 0:  # same-process loading
indices = next(self.sample_iter)  # may raise StopIteration
batch = self.collate_fn([self.dataset[i] for i in indices])
if self.pin_memory:
 batch = pin_memory_batch(batch)
return batch
  # check if the next sample has already been generated
  if self.rcvd_idx in self.reorder_dict:
batch = self.reorder_dict.pop(self.rcvd_idx)
return self._process_next_batch(batch)
  if self.batches_outstanding == 0:
self._shutdown_workers()
raise StopIteration
  while True:
assert (not self.shutdown and self.batches_outstanding > 0)
idx, batch = self._get_batch()
self.batches_outstanding -= 1
if idx != self.rcvd_idx:
 # store out-of-order samples
 self.reorder_dict[idx] = batch
 continue
return self._process_next_batch(batch)
 next = __next__  # Python 2 compatibility
 def __iter__(self):
  return self
 def _put_indices(self):
  assert self.batches_outstanding < 2 * self.num_workers
  indices = next(self.sample_iter, None)
  if indices is None:
return
  self.index_queues[self.worker_queue_idx].put((self.send_idx, indices))
  self.worker_queue_idx = (self.worker_queue_idx + 1) % self.num_workers
  self.batches_outstanding += 1
  self.send_idx += 1
 def _process_next_batch(self, batch):
  self.rcvd_idx += 1
  self._put_indices()
  if isinstance(batch, ExceptionWrapper):
raise batch.exc_type(batch.exc_msg)
  return batch
def _worker_loop(dataset, index_queue, data_queue, collate_fn, seed, init_fn, worker_id):
 global _use_shared_memory
 _use_shared_memory = True
 # Intialize C side signal handlers for SIGBUS and SIGSEGV. Python signal
 # module's handlers are executed after Python returns from C low-level
 # handlers, likely when the same fatal signal happened again already.
 # https://docs.python.org/3/library/signal.html Sec. 18.8.1.1
 _set_worker_signal_handlers()
 torch.set_num_threads(1)
 random.seed(seed)
 torch.manual_seed(seed)
 if init_fn is not None:
  init_fn(worker_id)
 watchdog = ManagerWatchdog()
 while True:
  try:
r = index_queue.get(timeout=MANAGER_STATUS_CHECK_INTERVAL)
  except queue.Empty:
if watchdog.is_alive():
 continue
else:
 break
  if r is None:
break
  idx, batch_indices = r
  try:
samples = collate_fn([dataset[i] for i in batch_indices])
  except Exception:
data_queue.put((idx, ExceptionWrapper(sys.exc_info())))
  else:
data_queue.put((idx, samples))
del samples

- 需要对队列操作,缓存数据,使得加载提速!

以上为个人经验,希望能给大家一个参考,也希望大家多多支持本站。

美国服务器租用

版权声明:本站文章来源标注为YINGSOO的内容版权均为本站所有,欢迎引用、转载,请保持原文完整并注明来源及原文链接。禁止复制或仿造本网站,禁止在非www.yingsoo.com所属的服务器上建立镜像,否则将依法追究法律责任。本站部分内容来源于网友推荐、互联网收集整理而来,仅供学习参考,不代表本站立场,如有内容涉嫌侵权,请联系alex-e#qq.com处理。

相关文章

实时开通

自选配置、实时开通

免备案

全球线路精选!

全天候客户服务

7x24全年不间断在线

专属顾问服务

1对1客户咨询顾问

在线
客服

在线客服:7*24小时在线

客服
热线

400-630-3752
7*24小时客服服务热线

关注
微信

关注官方微信
顶部