新闻动态

pytorch 如何使用batch训练lstm网络

发布日期:2022-04-01 10:39 | 文章来源:站长之家

batch的lstm

# 导入相应的包
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as Data 
torch.manual_seed(1) 
 
# 准备数据的阶段
def prepare_sequence(seq, to_ix):
 idxs = [to_ix[w] for w in seq]
 return torch.tensor(idxs, dtype=torch.long)
  
with open("/home/lstm_train.txt", encoding='utf8') as f:
 train_data = []
 word = []
 label = []
 data = f.readline().strip()
 while data:
  data = data.strip()
  SP = data.split(' ')
  if len(SP) == 2:
word.append(SP[0])
label.append(SP[1])
  else:
if len(word) == 100 and 'I-PRO' in label:
 train_data.append((word, label))
word = []
label = []
  data = f.readline()
 
word_to_ix = {}
for sent, _ in train_data:
 for word in sent:
  if word not in word_to_ix:
word_to_ix[word] = len(word_to_ix)
 
tag_to_ix = {"O": 0, "I-PRO": 1}
for i in range(len(train_data)):
 train_data[i] = ([word_to_ix[t] for t in train_data[i][0]], [tag_to_ix[t] for t in train_data[i][1]])
 
# 词向量的维度
EMBEDDING_DIM = 128
 
# 隐藏层的单元数
HIDDEN_DIM = 128
 
# 批大小
batch_size = 10  
class LSTMTagger(nn.Module):
 
 def __init__(self, embedding_dim, hidden_dim, vocab_size, tagset_size, batch_size):
  super(LSTMTagger, self).__init__()
  self.hidden_dim = hidden_dim
  self.batch_size = batch_size
  self.word_embeddings = nn.Embedding(vocab_size, embedding_dim)
 
  # The LSTM takes word embeddings as inputs, and outputs hidden states
  # with dimensionality hidden_dim.
  self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)
 
  # The linear layer that maps from hidden state space to tag space
  self.hidden2tag = nn.Linear(hidden_dim, tagset_size)
 
 def forward(self, sentence):
  embeds = self.word_embeddings(sentence)
  # input_tensor = embeds.view(self.batch_size, len(sentence) // self.batch_size, -1)
  lstm_out, _ = self.lstm(embeds)
  tag_space = self.hidden2tag(lstm_out)
  scores = F.log_softmax(tag_space, dim=2)
  return scores
 
 def predict(self, sentence):
  embeds = self.word_embeddings(sentence)
  lstm_out, _ = self.lstm(embeds)
  tag_space = self.hidden2tag(lstm_out)
  scores = F.log_softmax(tag_space, dim=2)
  return scores 
 
loss_function = nn.NLLLoss()
model = LSTMTagger(EMBEDDING_DIM, HIDDEN_DIM, len(word_to_ix), len(tag_to_ix), batch_size)
optimizer = optim.SGD(model.parameters(), lr=0.1)
 
data_set_word = []
data_set_label = []
for data_tuple in train_data:
 data_set_word.append(data_tuple[0])
 data_set_label.append(data_tuple[1])
torch_dataset = Data.TensorDataset(torch.tensor(data_set_word, dtype=torch.long), torch.tensor(data_set_label, dtype=torch.long))
# 把 dataset 放入 DataLoader
loader = Data.DataLoader(
 dataset=torch_dataset,  # torch TensorDataset format
 batch_size=batch_size,  # mini batch size
 shuffle=True,  #
 num_workers=2,  # 多线程来读数据
)
 
# 训练过程
for epoch in range(200):
 for step, (batch_x, batch_y) in enumerate(loader):
  # 梯度清零
  model.zero_grad()
  tag_scores = model(batch_x)
 
  # 计算损失
  tag_scores = tag_scores.view(-1, tag_scores.shape[2])
  batch_y = batch_y.view(batch_y.shape[0]*batch_y.shape[1])
  loss = loss_function(tag_scores, batch_y)
  print(loss)
  # 后向传播
  loss.backward()
 
  # 更新参数
  optimizer.step()
 
# 测试过程
with torch.no_grad():
 inputs = torch.tensor([data_set_word[0]], dtype=torch.long)
 print(inputs)
 tag_scores = model.predict(inputs)
 print(tag_scores.shape)
 print(torch.argmax(tag_scores, dim=2))

补充:PyTorch基础-使用LSTM神经网络实现手写数据集识别

看代码吧~

import numpy as np
import torch
from torch import nn,optim
from torch.autograd import Variable
from torchvision import datasets,transforms
from torch.utils.data import DataLoader
# 训练集
train_data = datasets.MNIST(root="./", # 存放位置
train = True, # 载入训练集
transform=transforms.ToTensor(), # 把数据变成tensor类型
download = True # 下载)
# 测试集
test_data = datasets.MNIST(root="./",
train = False,
transform=transforms.ToTensor(),
download = True)
# 批次大小
batch_size = 64
# 装载训练集
train_loader = DataLoader(dataset=train_data,batch_size=batch_size,shuffle=True)
# 装载测试集
test_loader = DataLoader(dataset=test_data,batch_size=batch_size,shuffle=True)
for i,data in enumerate(train_loader):
 inputs,labels = data
 print(inputs.shape)
 print(labels.shape)
 break
# 定义网络结构
class LSTM(nn.Module):
 def __init__(self):
  super(LSTM,self).__init__()# 初始化
  self.lstm = torch.nn.LSTM(
input_size = 28, # 表示输入特征的大小
hidden_size = 64, # 表示lstm模块的数量
num_layers = 1, # 表示lstm隐藏层的层数
batch_first = True # lstm默认格式input(seq_len,batch,feature)等于True表示input和output变成(batch,seq_len,feature)
  )
  self.out = torch.nn.Linear(in_features=64,out_features=10)
  self.softmax = torch.nn.Softmax(dim=1)
 def forward(self,x):
  # (batch,seq_len,feature)
  x = x.view(-1,28,28)
  # output:(batch,seq_len,hidden_size)包含每个序列的输出结果
  # 虽然lstm的batch_first为True,但是h_n,c_n的第0个维度还是num_layers
  # h_n :[num_layers,batch,hidden_size]只包含最后一个序列的输出结果
  # c_n:[num_layers,batch,hidden_size]只包含最后一个序列的输出结果
  output,(h_n,c_n) = self.lstm(x)
  output_in_last_timestep = h_n[-1,:,:]
  x = self.out(output_in_last_timestep)
  x = self.softmax(x)
  return x
# 定义模型
model = LSTM()
# 定义代价函数
mse_loss = nn.CrossEntropyLoss()# 交叉熵
# 定义优化器
optimizer = optim.Adam(model.parameters(),lr=0.001)# 随机梯度下降
# 定义模型训练和测试的方法
def train():
 # 模型的训练状态
 model.train()
 for i,data in enumerate(train_loader):
  # 获得一个批次的数据和标签
  inputs,labels = data
  # 获得模型预测结果(64,10)
  out = model(inputs)
  # 交叉熵代价函数out(batch,C:类别的数量),labels(batch)
  loss = mse_loss(out,labels)
  # 梯度清零
  optimizer.zero_grad()
  # 计算梯度
  loss.backward()
  # 修改权值
  optimizer.step()
  
def test():
 # 模型的测试状态
 model.eval()
 correct = 0 # 测试集准确率
 for i,data in enumerate(test_loader):
  # 获得一个批次的数据和标签
  inputs,labels = data
  # 获得模型预测结果(64,10)
  out = model(inputs)
  # 获得最大值,以及最大值所在的位置
  _,predicted = torch.max(out,1)
  # 预测正确的数量
  correct += (predicted==labels).sum()
 print("Test acc:{0}".format(correct.item()/len(test_data)))
 
 correct = 0
 for i,data in enumerate(train_loader): # 训练集准确率
  # 获得一个批次的数据和标签
  inputs,labels = data
  # 获得模型预测结果(64,10)
  out = model(inputs)
  # 获得最大值,以及最大值所在的位置
  _,predicted = torch.max(out,1)
  # 预测正确的数量
  correct += (predicted==labels).sum()
 print("Train acc:{0}".format(correct.item()/len(train_data)))
# 训练
for epoch in range(10):
 print("epoch:",epoch)
 train()
 test()

以上为个人经验,希望能给大家一个参考,也希望大家多多支持本站。

海外服务器租用

版权声明:本站文章来源标注为YINGSOO的内容版权均为本站所有,欢迎引用、转载,请保持原文完整并注明来源及原文链接。禁止复制或仿造本网站,禁止在非www.yingsoo.com所属的服务器上建立镜像,否则将依法追究法律责任。本站部分内容来源于网友推荐、互联网收集整理而来,仅供学习参考,不代表本站立场,如有内容涉嫌侵权,请联系alex-e#qq.com处理。

相关文章

实时开通

自选配置、实时开通

免备案

全球线路精选!

全天候客户服务

7x24全年不间断在线

专属顾问服务

1对1客户咨询顾问

在线
客服

在线客服:7*24小时在线

客服
热线

400-630-3752
7*24小时客服服务热线

关注
微信

关注官方微信
顶部