新闻动态

pytorch预测之解决多次预测结果不一致问题

发布日期:2022-03-28 12:45 | 文章来源:脚本之家

为什么多次预测结果不一致

1、检查是否在每次预测前使用

model.eval()

或者是

with torch.no_grad():
for ...

推荐下面的方法,上面的的方法计算梯度,但是并不反向传播,下面的方法既不计算梯度,也不反向传播,速度更快。

2、检查是否取消了所有的dropout

3、设置随机种子

def setup_seed(seed):
 np.random.seed(seed)
 random.seed(seed)
 torch.manual_seed(seed) #cpu
 torch.cuda.manual_seed_all(seed)  #并行gpu
 torch.backends.cudnn.deterministic = True  #cpu/gpu结果一致
 torch.backends.cudnn.benchmark = True#训练集变化不大时使训练加速

4、保证实例化模型前要将is_training置为false;这两行代码顺序不能颠倒

以上为个人经验,希望能给大家一个参考,也希望大家多多支持本站。

香港服务器租用

版权声明:本站文章来源标注为YINGSOO的内容版权均为本站所有,欢迎引用、转载,请保持原文完整并注明来源及原文链接。禁止复制或仿造本网站,禁止在非www.yingsoo.com所属的服务器上建立镜像,否则将依法追究法律责任。本站部分内容来源于网友推荐、互联网收集整理而来,仅供学习参考,不代表本站立场,如有内容涉嫌侵权,请联系alex-e#qq.com处理。

相关文章

实时开通

自选配置、实时开通

免备案

全球线路精选!

全天候客户服务

7x24全年不间断在线

专属顾问服务

1对1客户咨询顾问

在线
客服

在线客服:7*24小时在线

客服
热线

400-630-3752
7*24小时客服服务热线

关注
微信

关注官方微信
顶部