新闻动态

pytorch finetuning 自己的图片进行训练操作

发布日期:2022-03-19 09:16 | 文章来源:源码中国

一、pytorch finetuning 自己的图片进行训练

这种读取图片的方式用的是torch自带的 ImageFolder,读取的文件夹必须在一个大的子文件下,按类别归好类。

就像我现在要区分三个类别。

#perpare data set
#train data
train_data=torchvision.datasets.ImageFolder('F:/eyeDataSet/trainData',transform=transforms.Compose(
[
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor()
 ]))
print(len(train_data))
train_loader=DataLoader(train_data,batch_size=20,shuffle=True)

然后就是fine tuning自己的网络,在torch中可以对整个网络修改后,训练全部的参数也可以只训练其中的一部分,我这里就只训练最后一个全连接层。

torchvision中提供了很多常用的模型,比如resnet ,Vgg,Alexnet等等

# prepare model
mode1_ft_res18=torchvision.models.resnet18(pretrained=True)
for param in mode1_ft_res18.parameters():
 param.requires_grad=False
num_fc=mode1_ft_res18.fc.in_features
mode1_ft_res18.fc=torch.nn.Linear(num_fc,3)

定义自己的优化器,注意这里的参数只传入最后一层的

#loss function and optimizer
criterion=torch.nn.CrossEntropyLoss()
#parameters only train the last fc layer
optimizer=torch.optim.Adam(mode1_ft_res18.fc.parameters(),lr=0.001)

然后就可以开始训练了,定义好各种参数。

#start train
#label  not  one-hot encoder
EPOCH=1
for epoch in range(EPOCH):
 train_loss=0.
 train_acc=0.
 for step,data in enumerate(train_loader):
  batch_x,batch_y=data
  batch_x,batch_y=Variable(batch_x),Variable(batch_y)
  #batch_y not one hot
  #out is the probability of eatch class
  # such as one sample[-1.1009  0.1411  0.0320],need to calculate the max index
  # out shape is batch_size * class
  out=mode1_ft_res18(batch_x)
  loss=criterion(out,batch_y)
  train_loss+=loss.data[0]
  # pred is the expect class
  #batch_y is the true label
  pred=torch.max(out,1)[1]
  train_correct=(pred==batch_y).sum()
  train_acc+=train_correct.data[0]
  optimizer.zero_grad()
  loss.backward()
  optimizer.step()
  if step%14==0:
print('Epoch: ',epoch,'Step',step,
'Train_loss: ',train_loss/((step+1)*20),'Train acc: ',train_acc/((step+1)*20))

测试部分和训练部分类似这里就不一一说明。

这样就完整了对自己网络的训练测试,完整代码如下:

import torch
import numpy as np
import torchvision
from torchvision import transforms,utils
from torch.utils.data import DataLoader
from torch.autograd import Variable
#perpare data set
#train data
train_data=torchvision.datasets.ImageFolder('F:/eyeDataSet/trainData',transform=transforms.Compose(
  [
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor()
]))
print(len(train_data))
train_loader=DataLoader(train_data,batch_size=20,shuffle=True)
 
#test data
test_data=torchvision.datasets.ImageFolder('F:/eyeDataSet/testData',transform=transforms.Compose(
  [
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor()
]))
test_loader=DataLoader(test_data,batch_size=20,shuffle=True)
 
# prepare model
mode1_ft_res18=torchvision.models.resnet18(pretrained=True)
for param in mode1_ft_res18.parameters():
 param.requires_grad=False
num_fc=mode1_ft_res18.fc.in_features
mode1_ft_res18.fc=torch.nn.Linear(num_fc,3)
 
#loss function and optimizer
criterion=torch.nn.CrossEntropyLoss()
#parameters only train the last fc layer
optimizer=torch.optim.Adam(mode1_ft_res18.fc.parameters(),lr=0.001)
 
#start train
#label  not  one-hot encoder
EPOCH=1
for epoch in range(EPOCH):
 train_loss=0.
 train_acc=0.
 for step,data in enumerate(train_loader):
  batch_x,batch_y=data
  batch_x,batch_y=Variable(batch_x),Variable(batch_y)
  #batch_y not one hot
  #out is the probability of eatch class
  # such as one sample[-1.1009  0.1411  0.0320],need to calculate the max index
  # out shape is batch_size * class
  out=mode1_ft_res18(batch_x)
  loss=criterion(out,batch_y)
  train_loss+=loss.data[0]
  # pred is the expect class
  #batch_y is the true label
  pred=torch.max(out,1)[1]
  train_correct=(pred==batch_y).sum()
  train_acc+=train_correct.data[0]
  optimizer.zero_grad()
  loss.backward()
  optimizer.step()
  if step%14==0:
print('Epoch: ',epoch,'Step',step,
'Train_loss: ',train_loss/((step+1)*20),'Train acc: ',train_acc/((step+1)*20))
 
 #print('Epoch: ', epoch, 'Train_loss: ', train_loss / len(train_data), 'Train acc: ', train_acc / len(train_data))
 
# test model
mode1_ft_res18.eval()
eval_loss=0
eval_acc=0
for step ,data in enumerate(test_loader):
 batch_x,batch_y=data
 batch_x,batch_y=Variable(batch_x),Variable(batch_y)
 out=mode1_ft_res18(batch_x)
 loss = criterion(out, batch_y)
 eval_loss += loss.data[0]
 # pred is the expect class
 # batch_y is the true label
 pred = torch.max(out, 1)[1]
 test_correct = (pred == batch_y).sum()
 eval_acc += test_correct.data[0]
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()
print( 'Test_loss: ', eval_loss / len(test_data), 'Test acc: ', eval_acc / len(test_data))

二、PyTorch 利用预训练模型进行Fine-tuning

在Deep Learning领域,很多子领域的应用,比如一些动物识别,食物的识别等,公开的可用的数据库相对于ImageNet等数据库而言,其规模太小了,无法利用深度网络模型直接train from scratch,容易引起过拟合,这时就需要把一些在大规模数据库上已经训练完成的模型拿过来,在目标数据库上直接进行Fine-tuning(微调),这个已经经过训练的模型对于目标数据集而言,只是一种相对较好的参数初始化方法而已,尤其是大数据集与目标数据集结构比较相似的话,经过在目标数据集上微调能够得到不错的效果。

Fine-tune预训练网络的步骤:

1. 首先更改预训练模型分类层全连接层的数目,因为一般目标数据集的类别数与大规模数据库的类别数不一致,更改为目标数据集上训练集的类别数目即可,一致的话则无需更改;

2. 把分类器前的网络的所有层的参数固定,即不让它们参与学习,不进行反向传播,只训练分类层的网络,这时学习率可以设置的大一点,如是原来初始学习率的10倍或几倍或0.01等,这时候网络训练的比较快,因为除了分类层,其它层不需要进行反向传播,可以多尝试不同的学习率设置。

3.接下来是设置相对较小的学习率,对整个网络进行训练,这时网络训练变慢啦。

下面对利用PyTorch深度学习框架Fine-tune预训练网络的过程中涉及到的固定可学习参数,对不同的层设置不同的学习率等进行详细讲解。

1. PyTorch对某些层固定网络的可学习参数的方法:

class Net(nn.Module):
 def __init__(self, num_classes=546):
  super(Net, self).__init__()
  self.features = nn.Sequential(
 
nn.Conv2d(1, 64, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
 
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
  )
 
  self.Conv1_1 = nn.Sequential(
 
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
 
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
  )
 
  for p in self.parameters():
p.requires_grad=False
  self.Conv1_2 = nn.Sequential(
 
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
 
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
  )

如上述代码,则模型Net网络中self.features与self.Conv1_1层中的参数便是固定,不可学习的。这主要看代码:

for p in self.parameters():
 p.requires_grad=False

插入的位置,这段代码前的所有层的参数是不可学习的,也就没有反向传播过程。也可以指定某一层的参数不可学习,如下:

for p in  self.features.parameters():
 p.requires_grad=False

则 self.features层所有参数均是不可学习的。

注意,上述代码设置若要真正生效,在训练网络时需要在设置优化器如下:

 optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), args.lr,
  momentum=args.momentum,
  weight_decay=args.weight_decay)

2. PyTorch之为不同的层设置不同的学习率

model = Net()
conv1_2_params = list(map(id, model.Conv1_2.parameters()))
base_params = filter(lambda p: id(p) not in conv1_2_params,
model.parameters())
optimizer = torch.optim.SGD([
{'params': base_params},
{'params': model.Conv1_2.parameters(), 'lr': 10 * args.lr}], args.lr, 
momentum=args.momentum, weight_decay=args.weight_decay)

上述代码表示将模型Net网络的 self.Conv1_2层的学习率设置为传入学习率的10倍,base_params的学习没有明确设置,则默认为传入的学习率args.lr。

注意:

[{'params': base_params}, {'params': model.Conv1_2.parameters(), 'lr': 10 * args.lr}]

表示为列表中的字典结构。

这种方法设置不同的学习率显得不够灵活,可以为不同的层设置灵活的学习率,可以采用如下方法在adjust_learning_rate函数中设置:

def adjust_learning_rate(optimizer, epoch, args):
 lre = []
 lre.extend([0.01] * 10)
 lre.extend([0.005] * 10)
 lre.extend([0.0025] * 10)
 lr = lre[epoch]
 optimizer.param_groups[0]['lr'] = 0.9 * lr
 optimizer.param_groups[1]['lr'] = 10 * lr
 print(param_group[0]['lr'])
 print(param_group[1]['lr'])

上述代码中的optimizer.param_groups[0]就代表[{'params': base_params}, {'params': model.Conv1_2.parameters(), 'lr': 10 * args.lr}]中的'params': base_params},optimizer.param_groups[1]代表{'params': model.Conv1_2.parameters(), 'lr': 10 * args.lr},这里设置的学习率会把args.lr给覆盖掉,个人认为上述代码在设置学习率方面更灵活一些。上述代码也可如下变成实现(注意学习率随便设置的,未与上述代码保持一致):

def adjust_learning_rate(optimizer, epoch, args):
 lre = np.logspace(-2, -4, 40)
 lr = lre[epoch]
 for i in range(len(optimizer.param_groups)):
  param_group = optimizer.param_groups[i]
  if i == 0:
param_group['lr'] = 0.9 * lr
  else:
param_group['lr'] = 10 * lr
  print(param_group['lr'])

下面贴出SGD优化器的PyTorch实现,及其每个参数的设置和表示意义,具体如下:

import torch
from .optimizer import Optimizer, required
 
class SGD(Optimizer):
 r"""Implements stochastic gradient descent (optionally with momentum).
 Nesterov momentum is based on the formula from
 `On the importance of initialization and momentum in deep learning`__.
 Args:
  params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
  lr (float): learning rate
  momentum (float, optional): momentum factor (default: 0)
  weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
  dampening (float, optional): dampening for momentum (default: 0)
  nesterov (bool, optional): enables Nesterov momentum (default: False)
 Example:
  >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
  >>> optimizer.zero_grad()
  >>> loss_fn(model(input), target).backward()
  >>> optimizer.step()
 __ http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf
 .. note::
  The implementation of SGD with Momentum/Nesterov subtly differs from
  Sutskever et. al. and implementations in some other frameworks.
  Considering the specific case of Momentum, the update can be written as
  .. math::
v = \rho * v + g \\
p = p - lr * v
  where p, g, v and :math:`\rho` denote the parameters, gradient,
  velocity, and momentum respectively.
  This is in contrast to Sutskever et. al. and
  other frameworks which employ an update of the form
  .. math::
 v = \rho * v + lr * g \\
 p = p - v
  The Nesterov version is analogously modified.
 """
 
 def __init__(self, params, lr=required, momentum=0, dampening=0,
  weight_decay=0, nesterov=False):
  if lr is not required and lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
  if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
  if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
 
  defaults = dict(lr=lr, momentum=momentum, dampening=dampening,weight_decay=weight_decay, nesterov=nesterov)
  if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
  super(SGD, self).__init__(params, defaults)
 
 def __setstate__(self, state):
  super(SGD, self).__setstate__(state)
  for group in self.param_groups:
group.setdefault('nesterov', False)
 
 def step(self, closure=None):
  """Performs a single optimization step.
  Arguments:
closure (callable, optional): A closure that reevaluates the model
 and returns the loss.
  """
  loss = None
  if closure is not None:
loss = closure()
 
  for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
 
for p in group['params']:
 if p.grad is None:
  continue
 d_p = p.grad.data
 if weight_decay != 0:
  d_p.add_(weight_decay, p.data)
 if momentum != 0:
  param_state = self.state[p]
  if 'momentum_buffer' not in param_state:buf = param_state['momentum_buffer'] = torch.zeros_like(p.data)buf.mul_(momentum).add_(d_p)
  else:buf = param_state['momentum_buffer']buf.mul_(momentum).add_(1 - dampening, d_p)
  if nesterov:d_p = d_p.add(momentum, buf)
  else:d_p = buf
 
 p.data.add_(-group['lr'], d_p)
 
  return loss

经验总结:

在Fine-tuning时最好不要隔层设置层的参数的可学习与否,这样做一般效果饼不理想,一般准则即可,即先Fine-tuning分类层,学习率设置的大一些,然后在将整个网络设置一个较小的学习率,所有层一起训练。

至于不先经过Fine-tune分类层,而是将整个网络所有层一起训练,只是分类层的学习率相对设置大一些,这样做也可以,至于哪个效果更好,没评估过。当用三元组损失(triplet loss)微调用softmax loss训练的网络时,可以设置阶梯型的较小学习率,整个网络所有层一起训练,效果比较好,而不用先Fine-tune分类层前一层的输出。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持本站。

国外稳定服务器

版权声明:本站文章来源标注为YINGSOO的内容版权均为本站所有,欢迎引用、转载,请保持原文完整并注明来源及原文链接。禁止复制或仿造本网站,禁止在非www.yingsoo.com所属的服务器上建立镜像,否则将依法追究法律责任。本站部分内容来源于网友推荐、互联网收集整理而来,仅供学习参考,不代表本站立场,如有内容涉嫌侵权,请联系alex-e#qq.com处理。

相关文章

实时开通

自选配置、实时开通

免备案

全球线路精选!

全天候客户服务

7x24全年不间断在线

专属顾问服务

1对1客户咨询顾问

在线
客服

在线客服:7*24小时在线

客服
热线

400-630-3752
7*24小时客服服务热线

关注
微信

关注官方微信
顶部