新闻动态

PyTorch 如何检查模型梯度是否可导

发布日期:2022-03-18 16:36 | 文章来源:源码之家

一、PyTorch 检查模型梯度是否可导

当我们构建复杂网络模型或在模型中加入复杂操作时,可能会需要验证该模型或操作是否可导,即模型是否能够优化,在PyTorch框架下,我们可以使用torch.autograd.gradcheck函数来实现这一功能。

首先看一下官方文档中关于该函数的介绍:

可以看到官方文档中介绍了该函数基于何种方法,以及其参数列表,下面给出几个例子介绍其使用方法,注意:

Tensor需要是双精度浮点型且设置requires_grad = True

第一个例子:检查某一操作是否可导

from torch.autograd import gradcheck
import torch
import torch.nn as nn
 
inputs = torch.randn((10, 5), requires_grad=True, dtype=torch.double)
linear = nn.Linear(5, 3)
linear = linear.double()
test = gradcheck(lambda x: linear(x), inputs)
print("Are the gradients correct: ", test)

输出为:

Are the gradients correct: True

第二个例子:检查某一网络模型是否可导

from torch.autograd import gradcheck
import torch
import torch.nn as nn 
# 定义神经网络模型
class Net(nn.Module):
 
 def __init__(self):
  super(Net, self).__init__()
  self.net = nn.Sequential(
nn.Linear(15, 30),
nn.ReLU(),
nn.Linear(30, 15),
nn.ReLU(),
nn.Linear(15, 1),
nn.Sigmoid()
  )
 
 def forward(self, x):
  y = self.net(x)
  return y
 
net = Net()
net = net.double()
inputs = torch.randn((10, 15), requires_grad=True, dtype=torch.double)
test = gradcheck(net, inputs)
print("Are the gradients correct: ", test)

输出为:

Are the gradients correct: True

二、Pytorch求导

1.标量对矩阵求导

验证:

>>>import torch
>>>a = torch.tensor([[1],[2],[3.],[4]]) # 4*1列向量
>>>X = torch.tensor([[1,2,3],[5,6,7],[8,9,10],[5,4,3.]],requires_grad=True)  #4*3矩阵,注意,值必须要是float类型
>>>b = torch.tensor([[2],[3],[4.]]) #3*1列向量
>>>f = a.view(1,-1).mm(X).mm(b)  # f = a^T.dot(X).dot(b)
>>>f.backward()
>>>X.grad#df/dX = a.dot(b^T)
tensor([[ 2.,  3.,  4.],
 [ 4.,  6.,  8.],
 [ 6.,  9., 12.],
 [ 8., 12., 16.]])
>>>a.grad b.grad# a和b的requires_grad都为默认(默认为False),所以求导时,没有梯度
(None, None)
>>>a.mm(b.view(1,-1))  # a.dot(b^T)
 tensor([[ 2.,  3.,  4.],
 [ 4.,  6.,  8.],
 [ 6.,  9., 12.],
 [ 8., 12., 16.]])

2.矩阵对矩阵求导

验证:

>>>A = torch.tensor([[1,2],[3,4.]])  #2*2矩阵
>>>X =  torch.tensor([[1,2,3],[4,5.,6]],requires_grad=True)  # 2*3矩阵
>>>F = A.mm(X)
>>>F
tensor([[ 9., 12., 15.],
 [19., 26., 33.]], grad_fn=<MmBackward>)
>>>F.backgrad(torch.ones_like(F)) # 注意括号里要加上这句
>>>X.grad
tensor([[4., 4., 4.],
 [6., 6., 6.]])

注意:

requires_grad为True的数组必须是float类型

进行backgrad的必须是标量,如果是向量,必须在后面括号里加上torch.ones_like(X)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持本站。

美国服务器租用

版权声明:本站文章来源标注为YINGSOO的内容版权均为本站所有,欢迎引用、转载,请保持原文完整并注明来源及原文链接。禁止复制或仿造本网站,禁止在非www.yingsoo.com所属的服务器上建立镜像,否则将依法追究法律责任。本站部分内容来源于网友推荐、互联网收集整理而来,仅供学习参考,不代表本站立场,如有内容涉嫌侵权,请联系alex-e#qq.com处理。

相关文章

实时开通

自选配置、实时开通

免备案

全球线路精选!

全天候客户服务

7x24全年不间断在线

专属顾问服务

1对1客户咨询顾问

在线
客服

在线客服:7*24小时在线

客服
热线

400-630-3752
7*24小时客服服务热线

关注
微信

关注官方微信
顶部