新闻动态

Pytorch可视化的几种实现方法

发布日期:2022-03-14 09:17 | 文章来源:站长之家

一,利用 tensorboardX 可视化网络结构

参考 https://github.com/lanpa/tensorboardX
支持scalar, image, figure, histogram, audio, text, graph, onnx_graph, embedding, pr_curve and video summaries.
例子要求tensorboardX>=1.2 and pytorch>=0.4

安装

pip install tensorboardXpip install git+https://github.com/lanpa/tensorboardX

例子

# demo.py
import torch
import torchvision.utils as vutils
import numpy as np
import torchvision.models as models
from torchvision import datasets
from tensorboardX import SummaryWriter
resnet18 = models.resnet18(False)
writer = SummaryWriter()
sample_rate = 44100
freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440]
for n_iter in range(100):
 dummy_s1 = torch.rand(1)
 dummy_s2 = torch.rand(1)
 # data grouping by `slash`
 writer.add_scalar('data/scalar1', dummy_s1[0], n_iter)
 writer.add_scalar('data/scalar2', dummy_s2[0], n_iter)
 writer.add_scalars('data/scalar_group', {'xsinx': n_iter * np.sin(n_iter),
  'xcosx': n_iter * np.cos(n_iter),
  'arctanx': np.arctan(n_iter)}, n_iter)
 dummy_img = torch.rand(32, 3, 64, 64)  # output from network
 if n_iter % 10 == 0:
  x = vutils.make_grid(dummy_img, normalize=True, scale_each=True)
  writer.add_image('Image', x, n_iter)
  dummy_audio = torch.zeros(sample_rate * 2)
  for i in range(x.size(0)):
# amplitude of sound should in [-1, 1]
dummy_audio[i] = np.cos(freqs[n_iter // 10] * np.pi * float(i) / float(sample_rate))
  writer.add_audio('myAudio', dummy_audio, n_iter, sample_rate=sample_rate)
  writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter)
  for name, param in resnet18.named_parameters():
writer.add_histogram(name, param.clone().cpu().data.numpy(), n_iter)
  # needs tensorboard 0.4RC or later
  writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand(100), n_iter)
dataset = datasets.MNIST('mnist', train=False, download=True)
images = dataset.test_data[:100].float()
label = dataset.test_labels[:100]
features = images.view(100, 784)
writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1))
# export scalar data to JSON for external processing
writer.export_scalars_to_json("./all_scalars.json")
writer.close()

运行: python demo.py 会出现runs文件夹,然后在cd到工程目录运行tensorboard --logdir runs

结果:


二,利用 vistom 可视化

参考:https://github.com/facebookresearch/visdom

安装和启动
安装: pip install visdom
启动:python -m visdom.server示例

 from visdom import Visdom
 #单张
 viz.image(
  np.random.rand(3, 512, 256),
  opts=dict(title=\\\\\'Random!\\\\\', caption=\\\\\'How random.\\\\\'),
 )
 #多张
 viz.images(
  np.random.randn(20, 3, 64, 64),
  opts=dict(title=\\\\\'Random images\\\\\', caption=\\\\\'How random.\\\\\')
 )

from visdom import Visdom
image = np.zeros((100,100))
vis = Visdom() 
vis.text("hello world!!!")
vis.image(image)
vis.line(Y = np.column_stack((np.random.randn(10),np.random.randn(10))), 
X = np.column_stack((np.arange(10),np.arange(10))),
opts = dict(title = "line", legend=["Test","Test1"]))

三,利用pytorchviz可视化网络结构

参考:https://github.com/szagoruyko/pytorchviz

到此这篇关于Pytorch可视化的几种实现方法的文章就介绍到这了,更多相关Pytorch可视化内容请搜索本站以前的文章或继续浏览下面的相关文章希望大家以后多多支持本站!

香港稳定服务器

版权声明:本站文章来源标注为YINGSOO的内容版权均为本站所有,欢迎引用、转载,请保持原文完整并注明来源及原文链接。禁止复制或仿造本网站,禁止在非www.yingsoo.com所属的服务器上建立镜像,否则将依法追究法律责任。本站部分内容来源于网友推荐、互联网收集整理而来,仅供学习参考,不代表本站立场,如有内容涉嫌侵权,请联系alex-e#qq.com处理。

相关文章

实时开通

自选配置、实时开通

免备案

全球线路精选!

全天候客户服务

7x24全年不间断在线

专属顾问服务

1对1客户咨询顾问

在线
客服

在线客服:7*24小时在线

客服
热线

400-630-3752
7*24小时客服服务热线

关注
微信

关注官方微信
顶部