新闻动态

Pandas实现聚合运算agg()的示例代码

发布日期:2022-02-20 15:12 | 文章来源:脚本之家

在数据分析中,分组聚合二者缺一不可。对数据聚合(求和、平均值等)通常是不可避免的。pd.agg()很方便进行聚合操作。

1. 创建DataFrame对象

import pandas as pd
df1 = pd.DataFrame({'sex':list('FFMFMMF'),'smoker':list('YNYYNYY'),'age':[21,30,17,37,40,18,26],'weight':[120,100,132,140,94,89,123]})

grouped = df1.groupby(['sex','smoker'])
# sex有 F M 二值,smoker有 Y N 二值,故分成四组。

2. 单列聚合

grouped['age'].agg('mean')
sex  smoker
F N30.0
  Y28.0
M N40.0
  Y17.5
Name: age, dtype: float64

3. 多列聚合

grouped.agg('mean')

4. 多种聚合运算

grouped['age'].agg(['min','max'])

5. 多种聚合运算并更改列名

grouped['age'].agg([('A','mean'),('B','max')])

6. 不同的列运用不同的聚合函数

grouped.agg({'age':['sum','mean'], 'weight':['min','max']})

7. 使用自定义的聚合函数

def Max_cut_Min(group):
 return group.max()-group.min()
grouped.agg(Max_cut_Min)

8. 方便的descibe

grouped.describe()


参考博客:link

到此这篇关于Pandas实现聚合运算agg()的示例代码的文章就介绍到这了,更多相关Pandas 聚合运算agg()内容请搜索本站以前的文章或继续浏览下面的相关文章希望大家以后多多支持本站!

国外稳定服务器

版权声明:本站文章来源标注为YINGSOO的内容版权均为本站所有,欢迎引用、转载,请保持原文完整并注明来源及原文链接。禁止复制或仿造本网站,禁止在非www.yingsoo.com所属的服务器上建立镜像,否则将依法追究法律责任。本站部分内容来源于网友推荐、互联网收集整理而来,仅供学习参考,不代表本站立场,如有内容涉嫌侵权,请联系alex-e#qq.com处理。

相关文章

实时开通

自选配置、实时开通

免备案

全球线路精选!

全天候客户服务

7x24全年不间断在线

专属顾问服务

1对1客户咨询顾问

在线
客服

在线客服:7*24小时在线

客服
热线

400-630-3752
7*24小时客服服务热线

关注
微信

关注官方微信
顶部