新闻动态

(手写)PCA原理及其Python实现图文详解

发布日期:2022-02-11 12:45 | 文章来源:CSDN

1、背景

为什么需要降维呢?

因为数据个数 N 和每个数据的维度 p 不满足 N >> p,造成了模型结果的“过拟合”。有两种方法解决上述问题:

增加N;减小p。

这里我们讲解的 PCA 属于方法2。

2、样本均值和样本方差矩阵


3、PCA


3.1 最大投影方差

3.2 最小重构距离

4、Python实现

"""
 -*- coding: utf-8 -*-
 @ Time  : 2021/8/15  22:19
 @ Author: Raymond
 @ Email : wanght2316@163.com
 @ Editor: Pycharm
"""
from sklearn.datasets import load_digits
from sklearn.decomposition import PCA
import pandas as pd
import matplotlib.pyplot as plt
digits = load_digits()
print(digits.keys())
print("数据的形状为: {}".format(digits['data'].shape))
# 构建模型 - 降到10 d
pca = PCA(n_components=10)
pca.fit(digits.data)
projected=pca.fit_transform(digits.data)
print('降维后主成分的方差值为:',pca.explained_variance_)
print('降维后主成分的方差值占总方差的比例为:',pca.explained_variance_ratio_)
print('降维后最大方差的成分为:',pca.components_)
print('降维后主成分的个数为:',pca.n_components_)
print('original shape:',digits.data.shape)
print('transformed shape:',projected.shape)
s = pca.explained_variance_
c_s = pd.DataFrame({'b': s,'b_sum': s.cumsum() / s.sum()})
c_s['b_sum'].plot(style= '--ko',figsize= (10, 4))
plt.rcParams['font.sans-serif'] = ['SimHei']  # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题
plt.axhline(0.85,  color= 'r',linestyle= '--')
plt.text(6, c_s['b_sum'].iloc[6]-0.08, '第7个成分累计贡献率超过85%', color='b')
plt.title('PCA 各成分累计占比')
plt.grid()
plt.savefig('./PCA.jpg')
plt.show()

结果展示:

总结

本篇文章就到这里了,希望能给你带来帮助,也希望您能够多多关注本站的更多内容!

海外服务器租用

版权声明:本站文章来源标注为YINGSOO的内容版权均为本站所有,欢迎引用、转载,请保持原文完整并注明来源及原文链接。禁止复制或仿造本网站,禁止在非www.yingsoo.com所属的服务器上建立镜像,否则将依法追究法律责任。本站部分内容来源于网友推荐、互联网收集整理而来,仅供学习参考,不代表本站立场,如有内容涉嫌侵权,请联系alex-e#qq.com处理。

相关文章

实时开通

自选配置、实时开通

免备案

全球线路精选!

全天候客户服务

7x24全年不间断在线

专属顾问服务

1对1客户咨询顾问

在线
客服

在线客服:7*24小时在线

客服
热线

400-630-3752
7*24小时客服服务热线

关注
微信

关注官方微信
顶部