新闻动态

OpenCV半小时掌握基本操作之角点检测

发布日期:2022-01-14 19:27 | 文章来源:站长之家

概述

OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天小白就带大家一起携手走进 OpenCV 的世界.

角点检测

角点检测 (Corner Detection) 是图像的重要特征. 角点可以帮助我们实现图像对其, 图像拼接, 目标识别等等重要用途.

Harris 角点检测 (Harris Corner Detection) 是最基础也是最重要的一种角点检测算法. 通过计算图像在 x, y 上平移的自相似性 (Self-Similarity) 来判断图像是否为角点.

例如: 某图像的某个位置在 x / y 方向上做微小的滑动, 如果窗口内的灰度值都有较大变换, 那么这个位置就是角点.

角点检测代码

格式:

cv2.cornerHarris(src, blockSize, ksize, k, dst=None, borderType=None)

参数:

  • scr: 输入图像
  • blockSize: 焦点检测中指定区域的大小
  • ksize: Sobel 求导中使用的窗口大小
  • ksize: Sobel 孔径参数, 取值范围为 [0.04, 0.06]

例1 :

import numpy as np
import cv2
# 读取图片
image = cv2.imread("house.jpg")
# 转换成灰度图
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# harris角点检测
harris = cv2.cornerHarris(image_gray, 2, 3, 0.04)
# 阈值转换原图
image_corner = image.copy()
image_corner[harris > 0.01 * harris.max()] = [0, 0, 255]
# 整合
combine = np.hstack((image, image_corner))
# 图片展示
cv2.imshow("origional vs corner detection", combine)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 保存结果
cv2.imwrite("harris.jpg", combine)

输出结果:

例 2:

import numpy as np
import cv2
# 读取图片
image = cv2.imread("house2.jpg")
# 转换成灰度图
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# harris角点检测
harris = cv2.cornerHarris(image_gray, 2, 3, 0.04)
# 阈值转换原图
image_corner = image.copy()
image_corner[harris > 0.1 * harris.max()] = [0, 0, 255]
# 整合
combine = np.hstack((image, image_corner))
# 图片展示
cv2.imshow("origional vs corner detection", image_corner)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 保存结果
cv2.imwrite("harris.jpg", combine)

输出结果:

到此这篇关于OpenCV半小时掌握基本操作之角点检测的文章就介绍到这了,更多相关OpenCV角点检测内容请搜索本站以前的文章或继续浏览下面的相关文章希望大家以后多多支持本站!

版权声明:本站文章来源标注为YINGSOO的内容版权均为本站所有,欢迎引用、转载,请保持原文完整并注明来源及原文链接。禁止复制或仿造本网站,禁止在非www.yingsoo.com所属的服务器上建立镜像,否则将依法追究法律责任。本站部分内容来源于网友推荐、互联网收集整理而来,仅供学习参考,不代表本站立场,如有内容涉嫌侵权,请联系alex-e#qq.com处理。

相关文章

实时开通

自选配置、实时开通

免备案

全球线路精选!

全天候客户服务

7x24全年不间断在线

专属顾问服务

1对1客户咨询顾问

在线
客服

在线客服:7*24小时在线

客服
热线

400-630-3752
7*24小时客服服务热线

关注
微信

关注官方微信
顶部