新闻动态

Python使用OPENCV的目标跟踪算法实现自动视频标注效果

发布日期:2022-01-06 19:59 | 文章来源:站长之家

先上效果

1.首先,要使用opencv的目标跟踪算法,必须要有opencv环境

使用:opencv==4.4.0 和opencv-contrib-python==4.4.0.46,lxml这三个环境包。

也可以使用以下方法进行下载:

pip install opencv-python==4.4.0
pip install opencv-contrib-python==4.4.0.4

pip installlxml

2.使用方法:

(1):英文状态下的 “s” 是进行标注

(2):使用小键盘 1-9 按下对应的标签序号,标签序号和标签可自定义(需要提前定义)

(3):对目标进行绘制

(4):按空格键继续

重复进行 (1)(2)(3)(4)步骤,可实现多个目标的跟踪绘制

英文状态下的 “r” 是所有清除绘制

英文状态下的 “q” 是退出

当被跟踪目标丢失时,自动清除所有绘制

import cv2
import os
import time
from lxml import etree
 
#视频路径
Vs = cv2.VideoCapture('peaple.avi')
#自定义标签
Label = {1:"people",2:"car",3:"Camera"}
#图片保存路径 ,一定使用要用绝对路径!!
imgpath = r"C:\Users\BGT\Desktop\opencv\img"
#xml保存路径 ,一定使用要用绝对路径!!
xmlpath = r"C:\Users\BGT\Desktop\opencv\xml"
#设置视频缩放
cv2.namedWindow("frame", 0)
#设置视频宽高
cv2.resizeWindow("frame", 618, 416)
 
#定义生成xml类
class Gen_Annotations:
 def __init__(self, json_info):
  self.root = etree.Element("annotation")
 
  child1 = etree.SubElement(self.root, "folder")
  child1.text = str(json_info["pic_dirname"])
 
  child2 = etree.SubElement(self.root, "filename")
  child2.text = str(json_info["filename"])
 
  child3 = etree.SubElement(self.root, "path")
  child3.text = str(json_info["pic_path"])
 
  child4 = etree.SubElement(self.root, "source")
 
  child5 = etree.SubElement(child4, "database")
  child5.text = "My name is BGT"
 
 def set_size(self, witdh, height, channel):
  size = etree.SubElement(self.root, "size")
  widthn = etree.SubElement(size, "width")
  widthn.text = str(witdh)
  heightn = etree.SubElement(size, "height")
  heightn.text = str(height)
  channeln = etree.SubElement(size, "depth")
  channeln.text = str(channel)
  segmented = etree.SubElement(self.root, "segmented")
  segmented.text = "0"
 
 def savefile(self, filename):
  tree = etree.ElementTree(self.root)
  tree.write(filename, pretty_print=True, xml_declaration=False, encoding='utf-8')
 
 def add_pic_attr(self, label, x0, y0, x1, y1):
  object = etree.SubElement(self.root, "object")
  namen = etree.SubElement(object, "name")
  namen.text = label
  pose = etree.SubElement(object, "pose")
  pose.text = "Unspecified"
  truncated = etree.SubElement(object, "truncated")
  truncated.text = "0"
  difficult = etree.SubElement(object, "difficult")
  difficult.text = "0"
  bndbox = etree.SubElement(object, "bndbox")
  xminn = etree.SubElement(bndbox, "xmin")
  xminn.text = str(x0)
  yminn = etree.SubElement(bndbox, "ymin")
  yminn.text = str(y0)
  xmaxn = etree.SubElement(bndbox, "xmax")
  xmaxn.text = str(x1)
  ymaxn = etree.SubElement(bndbox, "ymax")
  ymaxn.text = str(y1)
 
 #定义生成xml的方法
def voc_opencv_xml(a,b,c,d,e,f,boxes,Label,Label_a,save="1.xml"):
 json_info = {}
 json_info["pic_dirname"] = a
 json_info["pic_path"] = b
 json_info["filename"] = c
 anno = Gen_Annotations(json_info)
 
 anno.set_size(d, e, f)
 
 for box in range(len(boxes)):
  x,y,w,h = [int(v) for v in boxes[box]]
  anno.add_pic_attr(Label[Label_a[box]],x,y,x+w,y+h)
 anno.savefile(save)
  
if __name__ == '__main__':
 Label_a = []
 contents = os.path.split(imgpath)[1]
 trackers = cv2.MultiTracker_create()
 while True:
  Filename_jpg = str(time.time()).split(".")[0] + "_" + str(time.time()).split(".")[1] + ".jpg"
  Filename_xml = str(time.time()).split(".")[0] + "_" + str(time.time()).split(".")[1] + ".xml"
 
  path_Filename_jpg = os.path.join(imgpath,Filename_jpg)
  path_Filename_xml = os.path.join(xmlpath,Filename_xml)
 
  ret,frame = Vs.read()
  if not ret:
break
 
  success,boxes = trackers.update(frame)
  if len(boxes)>0:
cv2.imwrite(path_Filename_jpg, frame)
judge = True
  else:
judge = False
 
if success==False:
print("目标丢失")
trackers = cv2.MultiTracker_create()
Label_a = []
judge = False
  if judge:
voc_opencv_xml(contents,Filename_jpg,path_Filename_jpg,frame.shape[1],frame.shape[0],frame.shape[2],boxes,Label,Label_a,path_Filename_xml)
  if judge:
for box in range(len(boxes)):
 x,y,w,h = [int(v) for v in boxes[box]]
 cv2.putText(frame, Label[Label_a[box]], (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 1)
 cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),2)
  
  cv2.imshow('frame',frame)
 
  var = cv2.waitKey(30)
 
  if var == ord('s'):
imgzi = cv2.putText(frame, str(Label), (50, 50), cv2.FONT_HERSHEY_TRIPLEX, 1, (0, 255, 0), 2)
cv2.imshow('frame', frame)
var = cv2.waitKey(0)
if var-48<len(Label) or var-48<=len(Label):
 Label_a.append(int(var-48))
box = cv2.selectROI("frame", frame, fromCenter=False,showCrosshair=True)
tracker = cv2.TrackerCSRT_create()
trackers.add(tracker,frame,box)
  elif var == ord("r"):
trackers = cv2.MultiTracker_create()
Label_a = []
  elif var == ord('q'): #退出
break
 
 Vs.release()
 cv2.destroyAllWindows()
 

3.得到xml和img数据是VOC格式,img和xml文件以时间戳进行命名。防止同名覆盖。

4.最后使用 labelImg软件 对获取到的img和xml进行最后的检查和微调

到此这篇关于Python使用OPENCV的目标跟踪算法进自动视频标注效果的文章就介绍到这了,更多相关OPENCV目标跟踪自动视频标注内容请搜索本站以前的文章或继续浏览下面的相关文章希望大家以后多多支持本站!

版权声明:本站文章来源标注为YINGSOO的内容版权均为本站所有,欢迎引用、转载,请保持原文完整并注明来源及原文链接。禁止复制或仿造本网站,禁止在非www.yingsoo.com所属的服务器上建立镜像,否则将依法追究法律责任。本站部分内容来源于网友推荐、互联网收集整理而来,仅供学习参考,不代表本站立场,如有内容涉嫌侵权,请联系alex-e#qq.com处理。

相关文章

实时开通

自选配置、实时开通

免备案

全球线路精选!

全天候客户服务

7x24全年不间断在线

专属顾问服务

1对1客户咨询顾问

在线
客服

在线客服:7*24小时在线

客服
热线

400-630-3752
7*24小时客服服务热线

关注
微信

关注官方微信
顶部