新闻动态

Python机器学习NLP自然语言处理基本操作词袋模型

发布日期:2022-01-02 04:22 | 文章来源:站长之家

概述

从今天开始我们将开启一段自然语言处理 (NLP) 的旅程. 自然语言处理可以让来处理, 理解, 以及运用人类的语言, 实现机器语言和人类语言之间的沟通桥梁.

词袋模型

词袋模型 (Bag of Words Model) 能帮助我们把一个句子转换为向量表示. 词袋模型把文本看作是无序的词汇集合, 把每一单词都进行统计.

向量化

词袋模型首先会进行分词, 在分词之后. 通过通过统计在每个词在文本中出现的次数. 我们就可以得到该文本基于词语的特征, 如果将各个文本样本的这些词与对应的词频放在一起, 就是我们常说的向量化.

例子:

import jieba
from gensim import corpora
# 定义标点符号
punctuation = [",", "。", ":", ";", "?", "!"]
# 定义语料
content = [
 "今天天气真不错!",
 "明天要下雨?",
 "后天要打雷。"
]
# 分词
seg = [jieba.lcut(con) for con in content]
print("语料:", seg)
# 去除标点符号
tokenized = seg.copy()
for s in tokenized:
 for p in punctuation:
  if p in s:
s.remove(p)
print("去除标点:", tokenized)
# tokenized是去标点之后的
dictionary = corpora.Dictionary(seg)
print("词袋模型:", dictionary)
# 保存词典
dictionary.save('deerwester.dict')
# 查看字典和下标id的映射
print("编号:", dictionary.token2id)

输出结果:

Building prefix dict from the default dictionary ...
Loading model from cache C:\Users\Windows\AppData\Local\Temp\jieba.cache
Loading model cost 1.140 seconds.
Prefix dict has been built successfully.
语料: [['今天天气', '真不错', '!'], ['明天', '要', '下雨', '?'], ['后天', '要', '打雷', '。']]
去除标点: [['今天天气', '真不错'], ['明天', '要', '下雨'], ['后天', '要', '打雷']]
词袋模型: Dictionary(7 unique tokens: ['今天天气', '真不错', '下雨', '明天', '要']...)
编号: {'今天天气': 0, '真不错': 1, '下雨': 2, '明天': 3, '要': 4, '后天': 5, '打雷': 6}

以上就是Python机器学习NLP自然语言处理基本操作词袋模型的详细内容,更多关于Python机器学习NLP自然语言处理的资料请关注本站其它相关文章!

版权声明:本站文章来源标注为YINGSOO的内容版权均为本站所有,欢迎引用、转载,请保持原文完整并注明来源及原文链接。禁止复制或仿造本网站,禁止在非www.yingsoo.com所属的服务器上建立镜像,否则将依法追究法律责任。本站部分内容来源于网友推荐、互联网收集整理而来,仅供学习参考,不代表本站立场,如有内容涉嫌侵权,请联系alex-e#qq.com处理。

相关文章

实时开通

自选配置、实时开通

免备案

全球线路精选!

全天候客户服务

7x24全年不间断在线

专属顾问服务

1对1客户咨询顾问

在线
客服

在线客服:7*24小时在线

客服
热线

400-630-3752
7*24小时客服服务热线

关注
微信

关注官方微信
顶部