新闻动态

Python异步爬虫多线程与线程池示例详解

发布日期:2021-12-29 21:51 | 文章来源:CSDN

背景

当对多个url发送请求时,只有请求完第一个url才会接着请求第二个url(requests是一个阻塞的操作),存在等待的时间,这样效率是很低的。那我们能不能在发送请求等待的时候,为其单独开启进程或者线程,继续请求下一个url,执行并行请求

异步爬虫方式

多线程,多进程(不建议)

好处:可以为相关阻塞的操作单独开启线程或者进程,阻塞操作就可以异步会执行

弊端:不能无限制开启多线程或者多进程(需要频繁的创建或者销毁进程,线程)

线程池,进程池(适当使用)

好处:可以降低系统对进程或线程创建和销毁的频率,从而很好的而降低系统的开销

弊端:线程或进程池中的数量是有上限的

单线程+异步协程(推荐)

多线程

正常运行如下的代码,需要花费8秒钟的时间,因为sleep是一个阻塞的操作,在等待的时候不会执行别的操作,极大地降低了效率

from time import sleep
import time
start = time.time()
def xx(str):
 print('正在下载:', str)
 sleep(2)
str = ['xiaozi', 'aa', 'bb', 'cc']
for i in str:
 xx(i)
end = time.time()
print('程序运行时间:',end-start)

使用多线程后

from threading import Thread
from time import sleep
import time
start = time.time()
def xx(str):
  print('正在下载:',str)
  sleep(2)
str =  ['xiaozi','aa','bb','cc']
def main():
 for s in str:
  #开启线程,target=函数名,args=(xx,) ,xx为向函数传递的参数,必须为元组类型,所以后面需要加,
  t = Thread(target=xx,args=(s,))
  t.start()
if __name__ == '__main__':
 main()
 end = time.time()
 print('程序运行时间:',end-start)

但是我们发现下面的运行顺序貌似有点乱的

线程池

对上面的改为线程池后运行

#倒入线程池模块对应的类
from multiprocessing.dummy import Pool
from time import sleep
import time
start = time.time()
def xx(str):
  print('正在下载:',str)
  sleep(2)
str =  ['xiaozi','aa','bb','cc']
#实例化一个线程池对象,线程池中开辟四个线程对象,并行4个线程处理四个阻塞操作
pool = Pool(4)
#将列表中的每一个列表元素(可迭代对象)传递给xx函数(发生阻塞的操作)进行处理
#map方法会有一个返回值为函数的返回值(一个列表),但是这里没有返回值所以不考虑
#调用map方法
pool.map(xx,str)
end = time.time()
print('程序运行时间:',end-start)

以上就是Python异步爬虫多线程与线程池示例详解的详细内容,更多关于Python异步多线程与线程池的资料请关注本站其它相关文章!

版权声明:本站文章来源标注为YINGSOO的内容版权均为本站所有,欢迎引用、转载,请保持原文完整并注明来源及原文链接。禁止复制或仿造本网站,禁止在非www.yingsoo.com所属的服务器上建立镜像,否则将依法追究法律责任。本站部分内容来源于网友推荐、互联网收集整理而来,仅供学习参考,不代表本站立场,如有内容涉嫌侵权,请联系alex-e#qq.com处理。

相关文章

实时开通

自选配置、实时开通

免备案

全球线路精选!

全天候客户服务

7x24全年不间断在线

专属顾问服务

1对1客户咨询顾问

在线
客服

在线客服:7*24小时在线

客服
热线

400-630-3752
7*24小时客服服务热线

关注
微信

关注官方微信
顶部