新闻动态

Python Pytorch深度学习之Tensors张量

发布日期:2021-12-18 07:06 | 文章来源:gibhub

环境:Anaconda自带的编译器——Spyder

最近才开使用conda,发现conda 就是 yyds,爱啦~

一、Tensor(张量)

import torch
#构造一个5*3的空矩阵
x=torch.FloatTensor(5,3)
print(x)
# 构造随机初始化矩阵
x=torch.rand(5,3)
print(x)
# 构造一个矩阵全为0,而且数据类型为long
x=torch.zeros(5,3,dtype=torch.long)
print(x)
# 构造一个张量,直接使用数据
x=torch.tensor([5.5,3])
print(x)
# 创建一个tensor基于已经存在到的tensor
x=x.new_ones(5,3,dtype=torch.double)
print(x)
x=torch.randn_like(x,dtype=torch.float)
print(x)
# 获取它的维度信息
print(x.size())

运行结果

二、操作

print("*************操作**************")
# 加法操作
y=torch.rand(5,3)
print(x+y)
print(torch.add(x, y))
# 定义变量,作为存储结果
result=torch.empty(5,3)
torch.add(x,y,out=result)
print(result)
y.add_(x)
print(y)

运行结果


注:任何使张量发生变化的操作都有一个前缀"":x.copy(y),这样才会发生改变

print("*************改变大小_view**************")
x=torch.rand(4,4)
y=x.view(16)
z=x.view(-1,8)
print(x.size())
print(y.size())
print(z.size())

运行结果

print("*************获得value**************")
x=torch.randn(1)
print(x)
print(x.item())#获得value值


总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注本站的更多内容!

版权声明:本站文章来源标注为YINGSOO的内容版权均为本站所有,欢迎引用、转载,请保持原文完整并注明来源及原文链接。禁止复制或仿造本网站,禁止在非www.yingsoo.com所属的服务器上建立镜像,否则将依法追究法律责任。本站部分内容来源于网友推荐、互联网收集整理而来,仅供学习参考,不代表本站立场,如有内容涉嫌侵权,请联系alex-e#qq.com处理。

相关文章

实时开通

自选配置、实时开通

免备案

全球线路精选!

全天候客户服务

7x24全年不间断在线

专属顾问服务

1对1客户咨询顾问

在线
客服

在线客服:7*24小时在线

客服
热线

400-630-3752
7*24小时客服服务热线

关注
微信

关注官方微信
顶部