Python Flask搭建yolov3目标检测系统详解流程
发布日期:2021-12-13 18:05 | 文章来源:源码中国
【人工智能项目】Python Flask搭建yolov3目标检测系统
后端代码
from flask import Flask, request, jsonify from PIL import Image import numpy as np import base64 import io import os from backend.tf_inference import load_model, inference os.environ['CUDA_VISIBLE_DEVICES'] = '0' sess, detection_graph = load_model() app = Flask(__name__) @app.route('/api/', methods=["POST"]) def main_interface(): response = request.get_json() data_str = response['image'] point = data_str.find(',') base64_str = data_str[point:] # remove unused part like this: "data:image/jpeg;base64," image = base64.b64decode(base64_str) img = Image.open(io.BytesIO(image)) if(img.mode!='RGB'): img = img.convert("RGB") # convert to numpy array. img_arr = np.array(img) # do object detection in inference function. results = inference(sess, detection_graph, img_arr, conf_thresh=0.7) print(results) return jsonify(results) @app.after_request def add_headers(response): response.headers.add('Access-Control-Allow-Origin', '*') response.headers.add('Access-Control-Allow-Headers', 'Content-Type,Authorization') return response if __name__ == '__main__': app.run(debug=True, host='0.0.0.0')
展示部分
python -m http.server
python app.py
前端展示部分
到此这篇关于Python Flask搭建yolov3目标检测系统详解流程的文章就介绍到这了,更多相关Python 目标检测系统内容请搜索本站以前的文章或继续浏览下面的相关文章希望大家以后多多支持本站!
版权声明:本站文章来源标注为YINGSOO的内容版权均为本站所有,欢迎引用、转载,请保持原文完整并注明来源及原文链接。禁止复制或仿造本网站,禁止在非www.yingsoo.com所属的服务器上建立镜像,否则将依法追究法律责任。本站部分内容来源于网友推荐、互联网收集整理而来,仅供学习参考,不代表本站立场,如有内容涉嫌侵权,请联系alex-e#qq.com处理。
相关文章