新闻动态

Python人工智能学习PyTorch实现WGAN示例详解

发布日期:2021-12-12 08:08 | 文章来源:站长之家

1.GAN简述

在GAN中,有两个模型,一个是生成模型,用于生成样本,一个是判别模型,用于判断样本是真还是假。但由于在GAN中,使用的JS散度去计算损失值,很容易导致梯度弥散的情况,从而无法进行梯度下降更新参数,于是在WGAN中,引入了Wasserstein Distance,使得训练变得稳定。本文中我们以服从高斯分布的数据作为样本。

2.生成器模块

这里从2维数据,最终生成2维,主要目的是为了可视化比较方便。也就是说,在生成模型中,我们输入杂乱无章的2维的数据,通过训练之后,可以生成一个赝品,这个赝品在模仿高斯分布。

3.判别器模块

判别器同样输入的是2维的数据。比如我们上面的生成器,生成了一个2维的赝品,输入判别器之后,它能够最终输出一个sigmoid转换后的结果,相当于是一个概率,从而判别,这个赝品到底能不能达到以假乱真的程度。

4.数据生成模块

由于我们使用的是高斯模型,因此,直接生成我们需要的数据即可。我们在这个模块中,生成8个服从高斯分布的数据。

5.判别器训练

由于使用JS散度去计算损失的时候,会很容易出现梯度极小,接近于0的情况,会使得梯度下降无法进行,因此计算损失的时候,使用了Wasserstein Distance,去度量两个分布之间的差异。因此我们假如了梯度惩罚的因子。

其中,梯度惩罚的模块如下:

6.生成器训练

这里的训练是紧接着判别器训练的。也就是说,在一个周期里面,先训练判别器,再训练生成器。

7.结果可视化

通过visdom可视化损失值,通过matplotlib可视化分布的预测结果。

以上就是人工智能学习PyTorch实现WGAN示例详解的详细内容,更多关于PyTorch实现WGAN的资料请关注本站其它相关文章!

版权声明:本站文章来源标注为YINGSOO的内容版权均为本站所有,欢迎引用、转载,请保持原文完整并注明来源及原文链接。禁止复制或仿造本网站,禁止在非www.yingsoo.com所属的服务器上建立镜像,否则将依法追究法律责任。本站部分内容来源于网友推荐、互联网收集整理而来,仅供学习参考,不代表本站立场,如有内容涉嫌侵权,请联系alex-e#qq.com处理。

相关文章

实时开通

自选配置、实时开通

免备案

全球线路精选!

全天候客户服务

7x24全年不间断在线

专属顾问服务

1对1客户咨询顾问

在线
客服

在线客服:7*24小时在线

客服
热线

400-630-3752
7*24小时客服服务热线

关注
微信

关注官方微信
顶部
请您留言

YINGSOO400-630-3752

提交