新闻动态

人工智能学习pyTorch的ResNet残差模块示例详解

发布日期:2021-12-12 07:45 | 文章来源:源码之家

1.定义ResNet残差模块

一个block中,有两个卷积层,之后的输出还要和输入进行相加。因此一个block的前向流程如下:

输入x→卷积层→数据标准化→ReLU→卷积层→数据标准化→数据和x相加→ReLU→输出out

中间加上了数据的标准化(通过nn.BatchNorm2d实现),可以使得效果更好一些。

①各层的定义

②前向传播

在前向传播中输入x,过程中根据前向流程,调用上面定义的层即可。

如此,便定义好了一个残差的模块。

2.ResNet18的实现

此处的ResNet18并没有涉及到太多细节,只是一个大致的内容。

在初始化的时候,定义好所需要使用的模块,根据上面定义好的残差模块,调用即可。在这里使用了4次残差模块,将通道数从输入的3(也就是RGB),变成了512通道。也就是最终提取的高级特征。提取完特征,直接输入给Linear方法,得到图片在10种图片类型上的结果,用于预测以及损失值的求解。

①各层的定义

②前向传播

同样的,调用上面定义好的层,根据流程传播即可。

3.测试ResNet18

如下图,输入的是2张图,RGB,长宽均是32的数据。

通过ResNet18之后,输出的是2张图,每张图对应10种类型的不同取值logits。

过程中的通道数目的转换如下面的结果所示:3→64→128→256→512→512

过程中的尺寸转换,根据设置的卷积核,以及步长,会有不同的结果。但总体都是为了得到更高级的特征,最终输入全连层,得到Logits。

以上就是人工智能学习pyTorch的ResNet残差模块示例详解的详细内容,更多关于PyTorch人工智能学习ResNet残差模块的资料请关注本站其它相关文章!

版权声明:本站文章来源标注为YINGSOO的内容版权均为本站所有,欢迎引用、转载,请保持原文完整并注明来源及原文链接。禁止复制或仿造本网站,禁止在非www.yingsoo.com所属的服务器上建立镜像,否则将依法追究法律责任。本站部分内容来源于网友推荐、互联网收集整理而来,仅供学习参考,不代表本站立场,如有内容涉嫌侵权,请联系alex-e#qq.com处理。

相关文章

实时开通

自选配置、实时开通

免备案

全球线路精选!

全天候客户服务

7x24全年不间断在线

专属顾问服务

1对1客户咨询顾问

在线
客服

在线客服:7*24小时在线

客服
热线

400-630-3752
7*24小时客服服务热线

关注
微信

关注官方微信
顶部